- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Buch, Jatan (1)
-
Gentine, Pierre (1)
-
Lamb, Kara D (1)
-
Liao, Kyleen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The increasing size and severity of wildfires across the western United States have generated dangerous levels of PM2.5concentrations in recent years. In a changing climate, expanding the use of prescribed fires is widely considered to be the most robust fire mitigation strategy. However, reliably forecasting the potential air quality impact from prescribed fires, which is critical in planning the prescribed fires’ location and time, at hourly to daily time scales remains a challenging problem. In this paper, we introduce a spatio-temporal graph neural network (GNN)-based forecasting model for hourly PM2.5predictions across California. Utilizing a two-step approach, we use our forecasting model to predict the net and ambient PM2.5concentrations, which are used to estimate wildfire contributions. Integrating the GNN-based PM2.5forecasting model with simulations of historically prescribed fires, we propose a novel framework to forecast their air quality impact. This framework determines that March is the optimal month for implementing prescribed fires in California and quantifies the potential air quality trade-offs involved in conducting more prescribed fires outside the peak of the fire season.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
